Indian Statistical Institute, Bangalore B. Math II, First Semester, 2024-25 Mid-semester Examination, Introduction to Statistical Inference 11.09.24 Maximum Score 100 Duration: 3 Hours

1. (10) Let $\mathbf{X}_1, \cdots, \mathbf{X}_n$ be i.i.d. $\mathcal{N}(\mu, \sigma^2)$ random variables. Show that $(\bar{\mathbf{X}}, s^2)$ is jointly sufficient for (μ, σ^2) , where

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_{i} - \bar{\mathbf{X}})^{2}.$$

- 2. (15) Suppose $\delta(X)$ is a Bayes estimator of parameter $g(\theta)$ under prior π . Suppose $\delta(X)$ is also unbiased for $g(\theta)$.
 - (a) Show, by conditioning on X, that $E(\delta(X)g(\theta)) = E(\delta^2(X))$.
 - (b) Show, by conditioning on θ , that $E(\delta(X)g(\theta)) = E(g^2(\theta))$.
 - (c) Conclude that $E(\delta(X) g(\theta))^2 = 0$.
 - (d) If X_1, \dots, X_n are iid $\mathcal{N}(\mu, 1)$, then use the above result to conclude that \bar{X} cannot be a Bayes estimator for μ under any prior.
 - (e) What can you conclude about unbiased Bayes estimators?
- 3. (20) Consider the regression model:

$$y_i = bx_i + e_i, 1 \le i \le n,$$

where x_i 's are fixed non-zero real numbers and e_i 's are independent random variables with mean zero and equal variance.

- (a) Find the least squares estimator of b.
- (b) Show that an estimator of the form $\sum_{i=1}^{n} a_i y_i$ (where a_i 's are non-random real numbers) is unbiased for b iff $\sum_{i=1}^{n} a_i x_i = 1$.
- (c) Show that the least squares estimator has the minimum variance in the class of unbiased estimators.
- 4. (10) Suppose X_1, \dots, X_n is a simple random sample drawn without replacement from a population y_1, \dots, y_N . Find the mean and variance of \bar{X} in terms of the population mean, variance, n and N.
- 5. (15) Let X_1, X_2 be independent $\mathcal{N}(\theta, 1)$ random variables. Then \bar{X} is unbiased for θ . Let $T = E(\bar{X} \mid X_1)$.
 - (a) Show that $E(T) = \theta$.
 - (b) Show that the variance of T is lower than that of \bar{X} .
 - (c) Is T better than \bar{X} as an estimator for θ ? Justify your answer.
- 6. (15) Let X_1, \dots, X_n be iid Geometric(p) random variables, each X_i denoting the number of Bernoulli(p) trials required for the first success.
 - (a) Show that \overline{X} attains the Cramer-Rao lower bound.
 - (b) Hence conclude that \bar{X} is UMVUE for 1/p.
- 7. (15) Consider the bivariate normal density

$$h(x,y) = \frac{1}{2\pi} \exp\left\{-\frac{1}{2}\left(2x^2 + y^2 + 2xy - 22x - 14y + 65\right)\right\}$$

Find the mean vector and the covariance matrix.